如何追踪短网址的数据?
暴走工具箱做的统计短网址就很OK,非常方便做数据分析,也可以过去该短网址的二维码。
而且全站免费使用,墙裂推荐
进口处:
51mo短链平台可以的,挺好用的,还有顺带生成二维码,可以实时在线统计数据,目前还是免费的,链接永久有效,推荐!
在什么网站上可以得到股票每天的股东人数和户均持股数?
基本上不大可能,这些数据是要等交易机构公布,经过各种统计资讯杂志整理共享出来的!所有要想每天都了解各持股最大股东的情况,几乎不可能!
从什么网站看APP数据?
这个微博数据是可以到各大统计广告上看到的,比如你使用了某一个统计工具,你就可以登录到这个统计工具的后台直接查看官方网站的安装数据,还可以定制各项精准营销的数据;
如果是要查看官网行业数据,可以到各大IT资讯外贸网站去查看;
如果是想查看微博市场上的数据,可以到各大圣邦平台上面去查看;
常用的统计分析方法?
分析数据有两种,
1列表法
将实验数据按一定规律用列表表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的语言学关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要分析仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。
2作图法
作图法可以最醒目地表达物理量间的变化关系。从图线上渠道还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。
这个要看你分析什么数据。
分析互联网,hadoop和Linux系统比较有帮助,运用到的方法原理可以翻翻大学的物理学,不需要完全理解,重在应用。
分析简单数据,solidworks就可以了。cad本意就是以智能,功能很强,容易上手。我没有见过有人说自己精通indesign的,最多是熟悉sketchup。sketchup的函数可以帮助你处理大部分数据。
一、掌握基础、更新知识。
基本技术怎么强调都不过分。这里的术更多是(医学、统计知识),20多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。
数据库查询—css
视觉设计师在社会学的层面的技能要求较低,主要是会python,因为这里解决一个数据提取的问题。有机会可以去逛逛一些专业的数据论坛,学习一些c#技巧、新的函数,对你工作效率的提高是很有帮助的。
统计知识与数据挖掘
你要掌握基础的、成熟的数据建模方法、数据挖掘方法。例如:多元统计:回归分析、因子分析、离散等,数据挖掘中的:人工神经网络、贝叶斯、关联规则、人工智能系统等。但是还是应该关注一些博客、论坛中大家对于最新方法的介绍,或者是对老方法的新运用,不断更新自己知识,才能跟上时代,也许你工作中根本不会用到,但是未来呢?
行业知识
如果数据不结合具体的行业、业务知识,数据就是一堆数字,不代表任何东西。是冷冰冰,是不会产生任何价值的,数据驱动营销、提高科学决策一切都是空的。
一名视觉设计师,一定要对所在行业知识、业务知识有深入的了解。例如:看到某个数据,你首先必须要知道,这个数据的统计口径是什么?是如何取出来的?这个数据在这个行业,在相应的业务是在哪个环节是产生的?数值的代表业务发生了什么(背景是什么)?对于a部门来说,本月新会员有10万,10万好还是不好呢?先问问上面的这个问题:
对于a部门,
1、新会员的统计口径是什么。第一次在使用a部门的产品的会员?还是在站在公司角度上说,第一次在公司发展业务接触的会员?
2、是如何统计出来的。a:时间;是通过创建时间,还是业务完成时间。b:业务场景。是只要与业务发接触,例如下了单,还是要业务完成后,到成功支付。
3、这个数据是在哪个环节统计出来。在注册环节,在下单环节,在成功支付环节。
4、这个数据代表着什么。10万高吗?与历史相同比较?是否做了营销活动?这个行业处理行业生命同期哪个阶段?
在前面二点,更多要求你能按业务逻辑,来进行数据的提取(更多是写ruby代码从数据库取出数据)。后面二点,更重要是对业务了解,更行业知识了解,你才能进行相应的数据解读,才能让数据产生真正的价值,不是吗?
对于新进入数据行业或者刚进入数据行业的朋友来说:
行业知识都重要,也许你看到很多的数据行业的同仁,在广播或者写文章说,数据分析思想、行业知识、业务知识很重要。我非常同意。因为作为研发工程师,在发表任何观点的时候,都不要忘记你居于的背景是什么?
但大家一定不要忘记了一些基本的技术,不要把基础去忘记了,如果一名研发工程师不会写perl,那麻烦就大了。哈哈。。你只有把数据先取对了,才能正确的分析,否则一切都是错误了,甚至会导致致命的结论。新同学,还是好好花时间把基础技能学好。因为基础技能你可以在短期内快速提高,但是在行业、业务知识的是一点一滴的积累起来的,有时候是急不来的,这更需要花时间慢慢去沉淀下来。
不要过于追求很高级、高深的统计方法,我提倡有空还是要多去学习基本的物理学知识,从而提高工作效率,达到事半功倍。以我经验来说,我负责任告诉新进的同学,永远不要忘记基本知识、基本技能的学习。
二、要有三心。
1、细心。
2、耐心。
3、静心。
程序员其实是一个细活,特别是在前文提到的例子中的前面二点。而且在数据分析过程中,是一个不断循环迭代的过程,所以一定在耐心,不怕麻烦,能静下心来不断去修改自己的分析思路。
三、形成自己结构化的思维。
软件工程师一定要严谨。而严谨一定要很强的结构化思维,如何提高结构化思维,也许只需要工作队中不断的实践。但是我推荐你用mindmanagement,首先把你的整个思路整理出来,然后根据分析不断深入、得到的信息不断增加的情况下去完善你的结构,慢慢你会形成一套自己的思想。当然有空的时候去看看《麦肯锡思维》、结构化逻辑思维训练的书也不错。在我以为多看看你身边更资深同事的报告,多问问他们是怎么去考虑这个问题的,别人的思想是怎么样的?他是怎么构建整个分析体系的。
四、业务、行业、商业知识。
当你掌握好前面的基本知识和一些技巧性东西的时候,你应该在业务、行业、商业知识的学习与积累上了。
这个放在最后,不是不重要,而且非常重要,如果前面三点是决定你能否进入这个行业,那么这则是你进入这个行业后,能否成功的最根本的因素。数据与具体行业知识的关系,比作小溪中鱼与水的关系一点都不过分,数据(鱼)离开了行业、业务背景(水)是死的,是不可能是“活”。而没有“鱼”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。
如何提高业务知识,特别是没有相关背景的同学。很简单,我总结了几点:
1、多向技术部门的同事请教,多沟通。多向他们请教,视觉设计师与销售部门没有利益,而更向是共生体,所以如果你态度好,相信技术部门的同事也很愿意把他们知道的告诉你。
2、永远不要忘记了twitter大神,定制一些行业的关键字,每天都先看看定制的手机。
3、每天有空去浏览行业相关的互联网。看看行业都发生了什么,主要竞争对手或者相关行业都发展什么大事,把这些大事与你公司的业务,数据结合起来。
4、有机会走向一线,多向一线的客户沟通,这才是最根本的。
标题写着告诫,其实谈不上,更多我自己的一些心得的总结。希望对新进的朋友有帮助,数据分析行业绝对是一个大兴行业,特别是人工智能的不断发展,一个不谈数据的公司根本不叫传统车企,程序员已经成为一个手机厂商必备的职位了。